
[Elsanosi,2(9): Sep. 2015] ISSN 2348 – 8034
Impact Factor- 3.155

(C)Global Journal Of Engineering Science And
Researches

42

GLOBAL JOURNAL OFENGINEERINGSCIENCE ANDRESEARCHES
EXPLICIT SOLUTION OF A DELAYED INVESTMENT PROBLEM

I.H. Elsanosi*1,2 and Entisar Alrasheed3

*1Department of Mathematics, Faculty of Mathematical sciences,
Alneelain University P. O. Box 12702

2Department of Mathematics, Faculty of Mathematical sciences, Albaha University
3Department of mathematics, College of Applied and Industrial Sciences, University of Bahri

ABSTRACT
We present an explicit solution to an optimal stopping (investment) problem in a modal described by stochastic
delay differential equation representing the dynamics of a risky assets (for example stocks). The method of
finding the required explicit solution is expressed in terms of the solution of a corresponding free boundary
value problem.
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I. INTRODUCTION
Suppose that a person's stock in a given market varies according to the following 2- dimensional
stochastic delay differential equation (SDDE):

)1,1(0,)()(exp)(exp)(

)()()(exp)()(

11

0

111

111

0

1111




































tBdsdstXstX

tdstXsdstXstXtXd









)2.1(0)()(1  sforssX 

tdstXsdstXstXtXd











 



)()()(exp)()( 222

0

2222 


)3.1(0,)()(exp)(exp)( 22

0

222 











 



tBdsdstXstX




)4.1(0)()(2  sforssX 

Where bi : R3→ R and σi : R3→ R are given functions , ,)2,1( i is the (constant) delay, λ

R is a constant and ),(,),()( 21  tBtBtB   ,0t is a 2-dimensional
Brownian motion.
The solution of (1.1) , (1.3) with initial path (1.2) , (1.4) is denoted by
  )(, 21 tXX  . For conditions for existence and uniqueness of solutions for such equations see

[M1], [M2]. The law of   )(, 21 tXX  is denoted by a )( tQ 
and the corresponding

expectation by
E .
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Historically the optimal stopping problem was strictly connected with the problem of the optimal
exercise time for the American put option. It has a deep connection with free-boundary problems.
Since the dynamics of the considered system is a delay system, it is known that the studies of such
problem are quite hard. The difficulty arises from the fact that it has an infinite dimensional nature.
In our approach to solve the given optimal stopping problem, we assume that the state variable to be
composed of a couple. The first component in this couple is a real variable carrying the present of the
system while the second one is some weighted average. This assumption reduces our infinite
dimensional problem to a finite dimensional one.

II. THE OPTIMAL STOPPING PROBLEM

Let 0,0,)()(  tsstXsX t  . i.e. tX is the segment of the path of tX
from t to t.

Let   )(,)( 21 tXXtX  be the solution of the systems (1.1) - (1.3) and let g (the reward
function) be a given function on R2 satisfying the following conditions:

2),(,0),()( Rgi  
gii)( is continuous

Find the optimal expected reward and the corresponding stopping time t for )( tX such that:
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We assume that the value function Φ depends on the initial path   , only through the
following four linear functionals:
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Where RR  4: Such idea is used in [ EOS] .

III. VARIATIONAL IN EQALITY FORMULATION

Suppose the functional F : R × R × C [–δ, 0] × C [–δ, 0] → R is of the form:
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   )(,)(,,,,,,, 2211,2121,21  YYXXtFXXtF  for some function

 31,1,2,2,1 RCf  .

Ito formula

Define
      )1.3().(,)(.).(,)(,)( 121111
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Then we have
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And  212121 ,,,,,, zzyyxxuFL and the other function are evaluated at
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Dynkin formula

Let  51,1,2,2,1 RCf  . Then for t 0 we have
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Where  212121 ,,,,,, zzyyxxuFL and the other functions in the curly bracket are
evaluated at
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Theorem 1 (Verification theorem). Let   5 RS .
Suppose we can find a nonnegative function φ: →R such that

   SSCi  01.1.2.2.1)( 
   21212121 ,,,,,,)( yyxxgyyxxii  on S and = g on S

Define the continuation region D . Assume D has the form:
      2211112121 ,,,,,,:)( yxvyxvSyyxxDiii  , For some Lipschitz

continuous function   ,0: 2Ru
 DSCvi  \)( 1.1.2.2.1 , where the second order derivatives of with respect to x1, x2 are

locally bounded near D
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is an optimal stopping time for problem (2.1), for the proof see (10.4.1) in [Ø].

IV. EXPLICIT SOLUTION OF PROBLEM (2.1)- CONSTANTS COEFFICIENTS
CASE

In equations (1.1) – (1.4) if the coefficients 21,1 ,  and 2 are such that :
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Then in view of theorem (1) we try to find a function φ of the form
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Where μ is a constant and    2211212121 )(exp,,, yyxxyyxxg  

The condition 0L gives
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Equation (4.7) holds if    212121 ,,,, vvhyyxx  for some function RRh 2: where
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Substituting this into (3.6) we get:
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Suppose that
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Then (3.10) gets the form
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Let us try as candidate for solution
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For suitable values the constants 0C and 0 . Equation (4.13) then gives
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The solutions of this equation are:
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Since we need to have 0 , we must require r2 r1. From now on we
choose the plus sing in (4.21). For this value of  put
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The last three equation have the unique solution
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The optimal strategy is to stop the first time the process,
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We need to check when v1 μ v2 . To this define
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Then we have   2121 ,0, vvifvvK  . Moreover
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Thus we conclude that φ = Φ and τ*= τD.

Theorem 2 Suppose Crr ,,,,, 2121  and  satisfy the following
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where   2,1,)(exp:  ir iii  and

  )24.4()(exp)(exp:  iiii 

v

v
v

v
C

v
v


















1

1
1,

1
 Then:

       22211121212121 ,,;,,,,,,),( yxvyxvyyxxyyxx  

       22211121212121 ,,;,,,,,,),( yxvyxvyyxxgyyxx  

The optimal stopping time τ*is the first time the process

    ).(,)(,).(,)( 2211

tt XytXXytX exist form the domain D, where
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Remark: If we let the delay δ approaches to zero then equations (4.1), (4.3) become

  )()()()( 1010111 tBdtXtdtXtXd  

  )()()()( 2020222 tBdtXtdtXtXd  

The corresponding solution is

    1
2121 , xxCxx for 21 xx  will then be the limit of

     0,,, 0  as in [HØ].
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